BIC FARRELL

BACKYARD ROCKETRY

Converting Model Rockets into Explosive Missiles

Paladin Press does not intend that any of the information contained in its books or videos be used for criminal purposes. In specific cases involving such misuse, Paladin will cooperate with law enforcement investigations.
CONTENTS

1 Introduction 1

Chapter 1
3 Overview 3

Chapter 2
5 Principles of Operation 5

Chapter 3
15 Improvised Missiles 15

Chapter 4
25 Warhead Safety 25

Chapter 5
31 Warhead Designs 31

Chapter 6
47 Missile Plans 47

Appendix I
61 Heat-Seeking Missile 61

Appendix II
63 Sikh-Heating Missile 63

Appendix III
65 Dangerous Rocket Club Code 65
This book contains extracts from the official constructor's handbook of the Dangerous Rocket Club, a completely fictitious organization that I made up in order to start this introduction.

It will show you how to build short- and medium-range surface-to-surface and surface-to-air missiles using off-the-shelf components and no tools (well, hardly any). Also included are designs for shoulder-launched rockets and warheads.

At last, those hard-to-reach targets are yours for the taking. City Hall, the local IRS offices, that damned polluting nuclear facility, whatever. You might even want to take a few to the next paintball game.

Using the techniques shown, it is also possible to make fully operational replicas of those neat multiple rocket launchers you've seen in Gulf War footage on TV. Using these (and assuming a suitable Iraqi target), you and your friends can re-enact the operation to your hearts' content. If you don't have a nearby Iraqi/Muslim community or can't locate a handy mosque, don't fret; you can find the addresses of relevant embassies in the Yellow Pages. These make great secondary targets.

The devices described here are based on flying model rocket components of the type available from hobby shops. Complete kits—which include engines, electrical igniters, launch pads, etc.—can be purchased over the counter.

A "Model Rocket Safety Code" exists, which, if followed,
ensures clean, safe fun for kids of all ages. A copy of the code will be supplied with most store-bought flying rocket kits or suppliers’ catalogs. The Dangerous Rocket Club’s version of this code appears in Appendix III. If followed, you will probably go to prison.

The engines and rocket kits themselves are supplied in configurations that ensure that altitude/distance and payload capabilities are kept within safe parameters. By modifying and adapting engines and rockets, however, it is possible to create missiles that have a far more "useful" range and capacity!

Disregarding established Model Rocket Safety Code rules and experimenting with model rocket engines can be dangerous. Installing explosive components into such rockets is definitely dangerous and also illegal. Only persons with a sound and proven knowledge of explosives handling and use should ever experiment with such substances, and even then, industry standard guidelines must be followed.

In any event, neither the author nor the publisher advocate or seek to encourage any breaches of the Model Rocket Safety Code or explosives laws and offer this book for information purposes only.

CHAPTER 1

OVERVIEW

Flying model rockets are constructed from lightweight materials such as cardboard tubes, plastic, and balsa wood. Despite this, the completed devices are surprisingly resilient. Kits are available in a variety of styles, ranging from simple, relatively inexpensive firework-size units to expensive scale replicas. Once the basic principles are understood, all component parts can be improvised easily, and the instructions provided with one kit can be used to make more rockets from components obtained elsewhere.

Assembly can take minutes or hours, depending on the level of complexity of the model. The tools required are a hobby knife, sandpaper, and some wood glue. Balsa wood sealer may be used prior to painting for a smoother and slightly more resilient finish. Enamel spray paint can be used for finishing, and this, too, helps "harden" the rocket.

The majority of commercial rocket kits include a parachute or streamer assembly that deploys at the end of the propellant burn period (more on this later) to facilitate safe recovery of the rocket. In the context of this book, parachutes or streamers would probably only be used as part of air-burst projects and during testing.

As supplied by the manufacturers, the rocket engines are completely safe. They are so safe, in fact, that the U.S. Department of Transportation (DOT) classifies them as “Toy Propellant Devices,” and they may thus be shipped through
the mail without problem under DOT exemption 7887 as “Flammable Solids.” (It is interesting to note that fireworks must be shipped as “Class C Explosives.”) Even the British government (notorious for its anti-things-that-contain-propellant laws) has determined that the current range of engines may be used without restrictions, save those pertaining to general safety.

As supplied, the model rocket engines comply with U.S. Consumer Product Safety Commission standards, and the launching of model rockets has been exempted from regulation by the Federal Aviation Agency. This relates to “unmodified” rockets, of course!

The techniques discussed in this manual are cheap and cheerful. They have been found to work but are not necessarily the “correct” or established way of doing things.

CHAPTER 2

PRINCIPLES OF OPERATION

Rockets are propelled according to Newton’s third law of motion: for every action there is an equal and opposite reaction.

The burning fuel creates gases much greater in volume than the fuel itself. As gas escapes through the engine nozzle, it exerts an equal force in the opposite direction, thrusting the rocket forward. The rocket is not (as one might at first think) propelled by the gas pushing against the air.

The supply of gas is provided by a small “solid-fuel” engine mounted in the base of the rocket. The propellants most typically used will be either black powder or ammonium perchlorate. Typical percentage by-weight mixes of both propellants are:

- **Black powder**: 74 percent KNO₃ (oxidizer), 15.6 percent C, 10.4 percent S (fuel plus binder).
- **Ammonium perchlorate**: 82 percent NH₄ClO₄, 17 percent synthetic rubber (fuel/binder), 1 percent burn-rate enhancers.

In addition to the propellant, most commercial engines incorporate a smoke charge (to help track the rocket during its nonpowered coast phase) and an ejection charge. Thus there is a delay—the length of which is determined by the amount of smoke charge present—between the end of the propellant burn period and the ejecting of the nose cone and parachute.
The rocket engine is fired by means of an electrical igniter. This is inserted into the engine nozzle so as to contact the propellant therein. It is initiated via a 6-volt battery pack and is, essentially, a "slow"-burning electrical match.

The most commonly available engines are rated by the manufacturers by total power produced, average thrust in newtons (4.45 newtons = 1 pound), and the number of seconds between the end of the thrust and (where applicable) the ejection charge. The rating takes the form of a three-character alphanumeric "serial number."

Thus, a "B6-4" engine will have twice the total power of an "A" designated engine (and half that of a "C" engine), will have an average thrust of 6 newtons, and will incorporate a delay of four seconds between the end of the thrust period and the firing of the ejection charge. Engines with a "0" suffix have no smoke or ejection charge and can be coupled directly to other engines to provide a multistage rocket.

Engines are available in the ranges "A" to "D." Important applicable specifications are given for various engines in subsequent chapters.

The engine is installed in a simple cylindrical mount which itself is affixed to the inside base of the rocket. The mount may incorporate a small, spring-steel quick-release device, or it may simply be held on a friction-fit basis. The securing technique need not be complex, as the tendency of the engine, once ignited, is to push upward anyway.

The centering/support rings of the engine mount have an external diameter similar to the internal diameter of the rocket body and are secured with adhesive. The engine tube has an internal diameter very slightly larger than that of the engine it is intended to carry.

A washerlike stop piece is installed inside the tube, and it is against this that the shoulders of the engine rest when inserted. Gases from the ejection charge are free to pass through its hollow center.

LAUNCHING

The rockets are launched (conventionally) from a commercially available launch pad. The pad is comprised of a stand, a metal deflector plate, and a vertical launch rod. The stand has an adjustable head to facilitate aiming and will not permit tilting in excess of 30 degrees from the vertical for safety reasons.

A cylindrical standoff piece is used to hold the rocket base/igniter wires clear of the deflector plate during firing. This can be improvised by wrapping tape around the launch rod.

The rod engages with rocket-mounted launch lugs and provides stability during the first couple of feet of flight. The
deflector plate merely serves to prevent ground fires being caused by the engine exhaust.

When firing explosive pad-launched rockets, the type of pad shown in Figure 4 should be used. It incorporates two launch rods and weighted or staked support legs for far greater stability.

The extra launch rod requires an additional set of launch lugs affixed to the rocket body. These should be attached 180 degrees from and exactly opposite the originals.

Typical Rocket

In a commercial rocket, the shock cord is a length of elastic connected between the rocket body tube and the parachute lug. It takes the shock during nose-cone ejection and keeps the nose cone and rocket body together for recovery.

When preparing the rocket for a launch, recovery wadding is packed loosely into the body tube to a depth approximately three times the body diameter. The fire-resistant wadding protects the chute from damage from the ejection charge and provides some additional pressure resistance to ensure the chute and cone are ejected cleanly.

With the wadding in place, the parachute canopy is fold-
Figure 5. Typical rocket.

ed and the lines wrapped loosely around it. The chute and shock cord are placed in the body tube and the nose cone installed. The nose cone normally will be a sliding fit in the body tube.

In the case of modified rockets not intended for recovery, the chute, shock cord, and recovery wadding will be discarded and the nose cone secured with adhesive. Where an explosive warhead is to be ejected, however, the wadding will be retained and the nose cone installed on the usual friction-fit basis. Note again that when firing explosive missiles, additional launch lugs should be attached and the improvised launch pad with its two launch rods used.

LAUNCH CONTROLLER

A launch controller enabling remote launches should always be used, regardless of whether conventional or modified rockets are being fired. The system should be based around a switch that returns to "off" automatically when released and should include a removable safety key (which can be as simple as a bent nail) that must be inserted manually into the controller to render the electrical circuit complete.

A visual indication that the circuit is complete should also be included, and a bulb in series with the safety lock achieves this. A commercial controller is available that meets these requirements; it can be purchased separately or as part of a "starter kit" that also comes with a launch pad.

To launch a rocket, an engine of the required size is installed in the base of the rocket and an igniter inserted into the nozzle. The igniter may be secured with masking tape.

Figure 6. Typical launch controller.

The rocket is now lowered onto the launch pad rod until it rests upon the standoff piece.

It is worth noting that the vast majority of misfires are caused by either a faulty or poorly installed igniter. Therefore, the igniter should be physically checked for damage before installation. If it is okay, it is inserted into the nozzle until resistance (from the solid propellant) is felt.

If the controller safety key is not in place, the controller wires may be attached to the igniter.

The safety key may now be inserted (at which point the indicator light should glow). With the immediate area clear of personnel, the rocket can be fired. Four 1.5-volt AA cells are sufficient to fire the igniter.
TYPICAL FLIGHT PROFILE, SINGLE STAGE AND MULTISTAGE

The flight profile of an unmodified model rocket commences when the igniter fires. When this happens, the rocket engine begins to burn and the rocket lifts off.

The rocket accelerates skyward at great speed. Speeds of several hundred miles per hour can be reached in a matter of seconds, depending on the power/weight ratio of the engine/rocket.

Having consumed the available propellant, the rocket continues toward its peak altitude under its own momentum, discharging smoke for observation purposes. Several seconds later the smoke charge ignites the ejection charge. The nose cone is blown off and the chute pulled free. The chute fills with air and the rocket body and nose cone drift back to earth.

In a multistage rocket, the first-stage engine will have no smoke or ejection charge. Instead, it provides the initial liftoff and thrust power and then ignites the second stage engine. As each subsequent engine fires, the previous one, complete with its mount and body-tube/fin section, is jettisoned. The final (upper) stage engine is the only one with an ejection charge, and when this is reached, the sequence of events is as per the single-stage rocket.

As can be seen from the chart (a more complete version of which is found in engine manufacturers' catalogs), each engine has a lift capacity determined, other things being equal, by the amount of propellant vs. smoke charge (delay time = smoke charge) it contains.

Note that when selecting engines for use in a specific project, the engine weight should be added to that of the rocket and payload to determine total launch weight.

Other things being equal, the greater the "headroom" between the maximum lift capacity of a given engine and the actual weight of the rocket, the greater the height/ range achieved.

Always test for height/range capabilities in an isolated area using inert components of the same weight and in the same position/configuration as any explosive material/firing.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DELAY</th>
<th>MAX LIFT WEIGHT</th>
<th>THRUST DURATION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6-2</td>
<td>2.00 sec.</td>
<td>4.50 oz.</td>
<td>0.83 sec.</td>
<td>0.68 oz.</td>
</tr>
<tr>
<td>B6-4</td>
<td>4.00 sec.</td>
<td>4.00 oz.</td>
<td>0.83 sec.</td>
<td>0.71 oz.</td>
</tr>
<tr>
<td>B8-5</td>
<td>5.00 sec.</td>
<td>5.00 oz.</td>
<td>0.60 sec.</td>
<td>0.68 oz.</td>
</tr>
<tr>
<td>C5-3</td>
<td>3.00 sec.</td>
<td>8.00 oz.</td>
<td>2.10 sec.</td>
<td>0.90 oz.</td>
</tr>
<tr>
<td>C6-5</td>
<td>5.00 sec.</td>
<td>4.00 oz.</td>
<td>1.70 sec.</td>
<td>0.91 oz.</td>
</tr>
<tr>
<td>B6-0</td>
<td>0.00 sec.</td>
<td>4.00 oz.</td>
<td>0.60 sec.</td>
<td>0.58 oz.</td>
</tr>
<tr>
<td>C6-0</td>
<td>0.00 sec.</td>
<td>4.00 oz.</td>
<td>1.68 sec.</td>
<td>0.80 oz.</td>
</tr>
<tr>
<td>D12-0</td>
<td>0.00 sec.</td>
<td>14.00 oz.</td>
<td>1.70 sec.</td>
<td>1.44 oz.</td>
</tr>
<tr>
<td>D12-3</td>
<td>3.00 sec.</td>
<td>14.00 oz.</td>
<td>1.70 sec.</td>
<td>1.49 oz.</td>
</tr>
<tr>
<td>D12-5</td>
<td>5.00 sec.</td>
<td>10.00 oz.</td>
<td>1.70 sec.</td>
<td>1.52 oz.</td>
</tr>
<tr>
<td>D12-7</td>
<td>7.00 sec.</td>
<td>8.00 oz.</td>
<td>1.70 sec.</td>
<td>1.55 oz.</td>
</tr>
</tbody>
</table>

"B" and "C" engines are 2.75 inches long, 0.690 inch in diameter.
"D" engines are 2.75 inches long, 0.945 inch in diameter.
chain components that will be used subsequently.

Always fire modified/explosive rockets from behind cover.

CHAPTER 3

IMPROVISED MISSILES

The designs that follow (Chapter 5) are based on commercially available, preformed rocket kit parts. These are available from most hobby/model shops and via mail order. If you are unfamiliar with the field, a visit to the local hobby/toy store is a must.

Specific brand names have not been given for legal reasons, but the reader should have no trouble determining (via reference to available catalogs, kits, and components) those which meet the parameters outlined in subsequent pages.

In any event, all the parts can be improvised easily. Cardboard tubes can be salvaged from many sources, balsa fin stock can be purchased in sheets from craft and hobby shops, and plastic nose cones can be improvised from the caps of aerosol spray cans and bathroom products.

TESTING FOR FLIGHT STABILITY

The stability of all improvised rockets—or commercial rockets into which extra parts have been added—must be checked and alterations made as required before firing. Flight stability can be determined by installing all components and engines (in the case of explosive rockets, inert components of the same weight and installed as per the explosive and fuze items should be used) and then locating the rocket's center of gravity.

A simple way of doing this is to find the point along the
body at which the rocket can be balanced on the edge of a ruler and attach a thin cord some 6 feet in length to this point. Whirl the rocket around by the cord at eye level and confirm that the rocket "flight path" is straight and true. Make small adjustments to the fin positions and/or the distribution of internal components as required.

Accurate fin placement is made easier if glue is applied to both the fin edge and the appropriate part of the body tube and left to dry for about five minutes before assembling. A commercial device is available that holds fins in position while the glue dries.

ENGINE MODIFICATION TECHNIQUES

The simplest modification that can be made to commercial rockets in order to obtain greater ranges and/or a higher payload capability is to utilize a much more powerful engine than is recommended by the manufacturers. For example, one can install a "D" engine in a rocket intended to use only "B" or "C" engines. This will require replacement of the supplied engine-mount assembly with one of a larger diameter, although often the engine-mount requirement can be ignored completely and the engine secured on a friction-fit basis by wrapping it with tape.

As long as the engine can be mounted securely, centrally, and in such a manner that the stability of the rocket in flight is
not adversely affected, then any form of improvisation may be used to accomplish the modification. Thus tape, adhesive, and silicone sealant may all be pressed into service.

Another technique is to install an additional "0" suffix engine (or more than one, of course) to provide a longer burn time, affixing it to the top of the first engine with wood glue applied to the card rim only (more on card adapters later). Cut off and discard the empty end sections of both engine bodies, and rotate the second engine 180 degrees, as shown in Figure 10.

The uppermost nozzle may now be removed by scraping with a plastic or wooden tool, or the nozzle hole can be enlarged to accommodate a fuse, black powder, etc.

The lengthened engine can be installed by extending the original engine mounting tube or discarding the engine mount and wrapping tape around the engine bodies to obtain a friction fit.

A higher initial thrust can be obtained from any flattened engine by carefully boring out a central cavity from the propellant material. The cavity should be around one-third the diameter of the propellant block and extend inward some five times that diameter. Never use any high-speed drill or other tool or technique that will generate excessive heat. A small hand reamer works well.

MULTISTAGING

Ranges can be increased by using multistage rockets. These incorporate individual engine, body section, and fin assemblies that are jettisoned when the next engine in the series fires.

Stage coupling is accomplished by using card adapters. These take the form of a collar with an external diameter slightly less than the internal diameter of the body tubes themselves, thus allowing a sliding fit. An adapter is secured with adhesive at the base of all the stages (except the first) in such a manner that half of its length remains exposed, and the preceding stage is simply slid on.

Prior to installation, the engines are coupled using cellophane tape. As the engine in the next stage ignites, the
resulting fire and pressure simply burn the tape through and jettison the entire lower engine/body/fin assembly.

All engines except the final (upper stage) one are to be of the "0" suffix type. The upper-stage engine is selected according to the constructor's requirements.

Existing single-stage rockets can be converted into multistage devices by adding extra body tube sections, each of which contains an engine mount assembly, or by segmenting an existing length of body tube and turning the sections into separate stages. Some commercial multistage rockets are available.

The fins on each additional body piece can be designed to mate and thereby form a continuation of those on the subsequent stage, or they may be duplicates of the existing fins. In either case, they should be aligned during fitting.

The stage couplers must have a diameter that produces a friction fit inside the appropriate body tube, and a length of approximately .75 to 3.9 inches, depending on the rocket body diameter. The larger the diameter, the larger the coupler.

"POWER-IN" MODIFICATION

This variation on standard techniques causes the rocket to power downward into the ground at tremendous speed rather than falling under the force of gravity. It has to be seen to be believed!

Couple two engines as per Figure 10, except that here the first-stage engine incorporates a delay rather than being a "0" suffix unit. Other things being equal, best effects are obtained when the delay selected is the maximum available.

Remove the clay retaining cap and ejection charge material from the lower engine by scraping with a plastic or wooden tool, leaving only the solid propellant and smoke charges. There is only a tiny amount of ejection charge compared to smoke charge, and the smoke charge itself is of a lighter, gray color. Shake out all loose material before attaching to the other engine.

Upon launching, the rocket travels under the power of the first engine until the propellant is exhausted. At this point the smoke charge fires and the rocket slows. After a few seconds the rocket begins to fall nose down. The smoke charge now ignites the second engine, which fires, causing the rocket to accelerate again.

Depending on the height that the rocket achieved initially, the second engine frequently will still be burning propellant when the rocket hits. It will almost certainly still have
unburned smoke and ejection charges. These can be incorporated into the firing chain of an explosive missile with great effect.

ULTRA-POWER CUSTOM ENGINE

All work on this modification is to be undertaken outside. Protective goggles and gloves must be worn. Have water or an extinguisher on hand in case of fire.

Disassemble seven "0" suffix engines by cutting lengthwise into each card body in such a manner that the card can be peeled away and the propellant block removed.

The clay nozzles are now broken away and discarded. It does not matter if small bits of the clay remain, as all but one of the sticks (use this one as the central stick) will be rotated prior to assembly so that the nozzle ends become the top of the engine pack.

Assemble the propellant blocks into a bundle as shown in Figure 14 and secure with tape. Install the bundle in a card tube having a diameter that facilitates a friction fit and a length that produces a gap of about 1 inch at either end. The wall thickness of the tube should be about 3 to 5 millimeters.

An improvised nozzle can now be prepared and installed in one end of the tube. Prior to installation, sprinkle a small amount of black or smokeless powder onto the propellant sticks simply to help ensure ignition.

For once-only use, the nozzle can be made from modeling clay or a "plastic metal" type material, or a hardwood nozzle of the required dimensions can be made and sprayed
over with high-temperature paint available from vehicle accessory shops. The burn time of most improvised engines will be so short anyway that by the time the nozzle has been destroyed, its job will have been done.

Whatever method is employed, the nozzle should be pressed home firmly against the propellant sticks and, if necessary, secured with adhesive applied to the outer wall of the nozzle only.

With the nozzle in place, pour a very small amount of black or smokeless powder into the nozzle opening and install an igniter. Secure the igniter with masking tape in such a manner that neither it, nor any of the powder, can fall out. The best technique is shown in Figure 15.

The choke point at the center of the nozzle is half of the mouth diameter, and the angle of divergence/convergence of the nozzle mouths is around 30 degrees.

Custom engines may also be coupled in-line to provide both greater lift capability and range.

Having first determined through test-firing with nonexplosive components the optimum warhead/payload weight that the rocket will carry over the required distance, the material used for test purposes can be replaced with an equivalent weight of similarly distributed explosive/firing-chain components and the recovery system components discarded. The precise specifications of firing-chain components and the weight/type of explosive material used will vary according to the type of rocket employed.

In direct contrast to the safety considerations outlined in the "Model Rocket Safety Code" (which are intended to prevent rockets from traveling horizontally), it is recommended that the minimum angle of launch when firing improvised missiles be 10 degrees from the vertical. The maximum angle of launch, applicable especially to shoulder-fired devices, should be slightly less than 90 degrees from the vertical to allow for any drop when the missile leaves the tube.

In the designs in the following chapter, the nose cones are of the commercial plastic type. It can be assumed that, where necessary, the bottom sections of these have been removed to facilitate access. Similarly, where a reference appears to, for example, the smoke charge lighting a fuse, it can be assumed that the retaining cap and ejection charge material have first been removed.

That said, the following improvised safety features (or
some other variants serving the same purpose) must be incorporated into all explosive rocket configurations. These systems are not shown on the warhead/rocket designs themselves for reasons of clarity.

ELECTRICAL SAFETY

This device provides for safer handling and protects against premature detonation in the event that an explosive impact-firing missile is dropped. The firing circuit is not actually armed until the missile is safely on the pad or in the tube.

The switch employed is of the subminiature release-to-make/release-to-break type. This type of switch is turned "on" by depressing and then releasing the button and turned "off" in the same manner. The release action is the one that actually causes the state of the switch to alter. These are readily available from the usual outlets.

The switch is installed in the rocket body in the "off" position in such a manner that it can be operated externally via a small piece of dowel inserted through an access hole in the rocket body and, where applicable, launching tube wall. In the case of tube-launched missiles, the access holes will align if, during construction, the rocket is installed in the tube and a hole drilled simultaneously through both launcher and rocket walls.

After loading, the dowel piece is inserted and the switch depressed and released. The system is now live.

![Figure 17. Manual electrical safety.](image)

MECHANICAL SAFETY

This safety feature can be incorporated into striker/plunger-

![Figure 19. Manual mechanical safety.](image)

For tube-launched missiles, the dowel piece may instead be incorporated into the inner face of a discarding support piece in such a manner that it depresses the switch when installed during loading (see Figure 18). The switch remains depressed until the support piece is discarded when the missile leaves the tube, at which point the switch springs out to the "on" position.

![Figure 18. Automatic electrical safety.](image)
type firing mechanisms. It consists, simply, of a wooden or plastic pin inserted through the missile wall in such a manner that it prevents the striker/plunger from contacting the primer or completing an electrical circuit.

In the case of pad-launched missiles, this safety is removed manually immediately prior to launching. For tube-launched missiles, the safety may incorporate a spring that is compressed during loading and kept under tension by the launcher walls. Upon leaving the tube, the spring throws the safety pin free (see Figure 20).

A clip safety takes the form of a simple split-washer or such that fits between a nose-mounted plunger and the nose cone proper, preventing the former from being depressed.

Figure 20. Automatic mechanical safety.

Figure 21. Clip-type safety.
The percussion fuzes shown in several of the following designs operate only when the missile strikes an object at speed. When this occurs, the sudden loss of momentum causes the striker (which is free to slide within its housing) to be thrown forward. This forward movement overcomes the tension in the spring and the striker pin hits the primer. The spring must be of sufficient strength to prevent the striker pin from contacting the primer when the missile is inverted during normal handling.

As a matter of prudence, safety fuse should be used in the firing chain of nonelectric, impact-firing devices.

Improvised explosive warheads should only be assembled immediately prior to use.
Figure 22.

Upon impact, the striker flies forward and hits the shell primer, causing the shell to fire.

Figure 23.

Upon impact, the striker hits the primer, lighting the percussion igniter and thereby the safety fuse. After a few seconds, the burning fuse reaches the blasting cap, which explodes and detonates the warhead.

Figure 24.

Upon impact, the striker sets off the shotgun blank, igniting the black powder and producing a low-level explosion.

Figure 25.

Upon impact, the striker shatters the glass vial, causing the acid to contact the potassium chlorate/sugar mixture. The resulting heat and flame fire the detonator.
The charged capacitor is used, as its weight is far less than that of a battery. It is charged immediately prior to installation.

Upon impact, the switch, which is of the press-to-make/press-to-break type, is depressed and the electrical circuit completed. Current flows from the capacitor to the detonator and the device explodes.

The electrical detonator is positioned at the top center of the explosive. The capacitor is of the electrolytic type.

Upon impact, the sliding plunger hits the switch, which closes, completing the circuit and firing the detonator. The cavity/liner "focuses" the explosion, creating a highly penetrating effect.

The cone can also be improvised from a wine glass or funnel. If a cavity liner can not be improvised, lesser shaped-charge effects may be obtained by simply cutting the cavity directly out of the explosive material itself.

The nose cone should be of a lightweight metal having a thickness 1 millimeter or so greater than the thickness of the internal cone. Similarly, the distance between the front of the nose cone and the face of the cavity should be one to two times the diameter of the cone (cavity) face.

The cavity liner is made of copper or tin sheet, 1 to 3 millimeters thick, formed into a cone (as shown in Figure 27), with an angle of between 30 and 60 degrees.
Figure 29.

Upon impact, the dowel is depressed and the contacts touch. This completes the circuit; current flows from the capacitor to the detonator and the device fires.

A battery can be substituted for the capacitor if tests (using nonexplosive components) confirm that the rocket/engine configuration can handle the weight. The dowel should be tightly fit in the nose cone. The dowel contact may be foil or conductive silver paint.

The balsa sheet prevents the dowel piece from operating the switch except under force of an impact.

Figure 30.

At the end of the propellant and smoke charge burn period, the ejection charge ignites and discharges the flammable wadding, which floats down onto the target.

Figure 31.

A cylindrical extension piece is added to the end of the engine and a small quantity of black or smokeless powder poured in. The safety fuse is inserted into this and secured with tape. The surrounding rocket body space is packed with recovery wadding as shown.

The ejection charge simultaneously ejects the nose cone and starts the safety fuse burning, subsequently igniting the improvised incendiary mix in its container. The engine end of the fuse should be split and a match head inserted to assist lighting.

Figure 32.

The clay retaining cap is removed from the engine and loose material discarded. A powder-filled tube is secured in the resulting space. The end of the burning smoke charge ignites the black powder in the tube, which flashes through to the detonator.
The smoke charge lights the safety fuse, which, after a predetermined delay, sets off the blasting cap, which detonates the explosive. The length of the safety fuse determines the height above the ground at which the warhead explodes.

The safety fuse is lit and the rocket launched. The device explodes when the burning fuse reaches the detonator.

The ejection charge forces the dowel piece against the switch, which completes the electrical circuit, causing the detonator to fire.

When the ejection charge fires, the nose cone is blown free and the switch released. The electrical circuit is completed and the warhead explodes.

The switch, which is of the release-to-make/break type, is secured firmly with epoxy in such a manner that it is depressed when the nose cone is inserted. The power source may be an electrolytic capacitor or a battery.
DELAYED-ACTION DEVICE

Figure 37.

Again, an engine incorporating an ejection charge is used here. Upon firing, the nose cone with its explosive components is discharged and the parachute deployed. The warhead floats to earth and explodes after the preset time delay expires.

Note that with all such projects involving parachutes, wind drift is a major consideration. Tests (using inert components) will enable you, however, to compensate for anticipated drift caused by a given wind speed and direction with surprising accuracy.

SHOULDER LAUNCHER I

Figure 38. Sectional view showing construction details.

Never fire safety-fuse-based missiles from an improvised shoulder launcher. If the missile hangs up in the tube and you are slow with your immediate-action (IA) drills, your hair will really get messed up.

Q: What are the IA drills for this type of weapon?
A: In the event of any malfunction, place the weapon on the ground at a speed approaching that of light and run like hell!

The rocket to be used in this configuration is first equipped with an additional pair of launch lugs. These are attached to the opposite side of the rocket body, as shown in Figure 38.

The launch tube is cardboard or plastic, three to four times the length of the rocket. The switch is of the nonlatching type.

To prepare for firing, install an igniter in the rocket nozzle and secure it firmly with masking tape. Spread the igniter wires so as to ensure contact with the foil pieces.

Now slide the rocket down into the tube. To fire, place the rocket tube on the shoulder and, having checked that no one is standing immediately to the rear, depress the switch.

Note that there may be a delay of about a second before the rocket engine fires (depending on the state of charge of the battery pack), so a good follow-through is essential!

Take care not to point the launcher downward in such a manner that an impact-firing rocket could fall from the tube and explode.

Note that for maximum effect with all shoulder-launched impact-firing missiles, targets should be engaged from the closest practicable range, and certainly within a distance no greater than two-thirds of the missile's determined maximum range.

A simple sight can be improvised using nonexplosive components during tests. This may take the form of a short tube mounted on the top of the launcher, with thin string fastened across its front, as shown in Figure 39.
Start with a basic cross hair and aim at some object dead center. Note the drop, any windage effects, and the actual “hit” area. Note the range on the side of the launcher in felt pen. If required, a second cross hair can be added below the first and its corresponding range noted.

Be aware that with a “D” prefix engine, the shoulder-launched missile described in the next chapter will travel many hundreds of yards, even with the added weight of firing-chain components. Whilst this might seem like overkill for a missile with an obviously low explosive capacity, the idea is that at closer ranges, targets can be engaged with surprising accuracy and “kill confidence.” This latter condition is by virtue of the fact that the still high speed of the missile will help ensure the correct operation of impact-fired mechanisms.

The launch rods in this device extend an inch or so through the rear of the hardwood insert so an electrical connection can be made through them to the igniter.

To load, hold the rocket tube vertically and engage the launch lugs with the launch rods. Wrap the igniter wires tightly around the launch rods and push the rocket home using a hollow tube of such a diameter that it rests on, but will not slide over, the rocket shoulders.

Attach a commercial launch controller—or an improvised version—to the top of the launcher tube with duct tape, or attach a battery pack and nonlatching switch assembly to the underside of the launcher as per the previous design. Connect the alligator clips from the controller to the ends of the launch rods.

The upright portion of a scrap computer joystick can be used to make a very professional-looking firing switch/pistol grip. Computer game “light guns” are also ideal, as these incorporate a built-in battery holder.
SHOULDER LAUNCHER III

LAUNCHER TUBE

ROCKET BODY

DISCARDING SUPPORT PIECES

Figure 41. Sectional view showing discarding support pieces.

Additional launch lugs are not required for this design.

The discarding support pieces are two disks, 1 to 2 inches thick, of felt or balsa wood, for example. Each disk has an internal diameter similar to that of the rocket body and an external diameter that allows a sliding fit in the rocket tube. The disks are cut in half and mated around the rocket body during loading, as shown in Figure 41. The electrical connections are the same as for Shoulder Launcher I.

To load, install an igniter and secure with masking tape.

Again, ensure the ends of the igniter wires are bent so as to provide a good electrical contact with the foil.

The lower (engine end) pair of disks is then placed around the rocket body and the body lowered partway into the tube. The upper (nose cone end) pair of disks is now fitted onto the rocket body and the rocket pushed home.

Attach the launch controller alligator clips to the ends of the foil contacts, install the safety key, and confirm continuity. Depressing the controller button fires the rocket, which, upon leaving the tube, discards the support pieces.

MLRS (MULTIPLE LAUNCH ROCKET SYSTEM)

The rocket tube assembly consists of, for example, twelve card or plastic tubes, assembled as per the Shoulder Launcher II design and secured with masking tape, as shown in Figure 43.

To ensure simultaneous firing, a battery pack having a high current capacity should be used. A car or motorcycle battery is ideal.

Figure 43. Rear view showing electrical connections.

Install an engine and igniter into each rocket, wrap the igniter wires around the launch rods as previously described, and load the rockets into the tubes. The igniters, via the protruding ends of the launch rods, are connected in series.

Angle-of-launch adjustment is accomplished by wedging...
wooden pieces under the front of the tube assembly. A launch frame proper, incorporating a simple adjustment mechanism, can be improvised easily if required.

![Diagram](image)

Figure 44. Individual firing variation.

CHAPTER 6

MISSILE PLANS

The following plans outline the construction of pad-launched, tube-launched, and tube-launched, optically tracked, radio-controlled (TORC) missile systems. These plans should fire your imagination and suggest any number of possible variations, modifications, and improvements.

GENERAL CONSTRUCTION NOTES

1. The dimensions are not absolutely critical and may be varied slightly according to available parts.
2. For maximum strength, the grain of the balsa wood should follow the leading edge of the fin.
3. The engine mount/ejection tube dimensions shown in the plan for the pad-launched missile assumes the use of two "D" suffix engines. For custom engines with a larger diameter, simply scale up the mount accordingly.
4. The "D" engine is fitted into the shoulder-launch missile on the friction-fit principle by wrapping it with masking tape or building up its external diameter with thin card.
5. The engine shock piece used here is 1/16 inch thick and has an external diameter that allows for a friction fit inside the engine mount tube and an internal diameter of around 1/8 inch less. It should be secured with adhesive within the engine mount tube at a point equal to the length of the engine's to be used, less 1/4 inch. In the case of the design shown, this is 5 1/4 inch from the lower end of the body.
tube. This leaves the engine (or the first of two or more engines) protruding 1/4 inch when installed and facilitates easy removal after test-firing.

5. After the initial fixing adhesive has dried, apply an extra fillet of wood glue to the fin/body joints for extra strength.

6. Being lightweight, these missiles obviously are susceptible to wind drift. Therefore, make sure you start your war on a calm day.

PAD-LAUNCHED MISSILE

Figure 45. Major dimensions of a pad-launched missile.

Figure 46. Fin details.

Figure 47. Engine mount details.

Figure 48. View from rear showing fin and launch lug positions.
A parachute, if required, can be improvised from a 12- to 24-inch diameter piece of polythene. Other things being equal, the larger the chute, the slower the descent.

Canopy lines can be made from six 12- to 24-inch lengths of thin cord, attached to the parachute canopy with small pieces of adhesive paper strip or circles of the type available at stationery stores.

A shock cord suitable for use with the larger missile can be made from a 24-inch length of elastic 1/4-inch wide. Simply scale it down for smaller missiles.

TUBELAUNCHED MISSILE

Pad-launched missiles are fun. Tube-launched missiles are really fun! Initial targets (for practice purposes) should be stationary. Trees are good, as are related objects such as sleeping members of Greenpeace. Of course, you should never fire explosive warheads at trees.

TORC MISSILE

The following is a design for a TORC (tube launched, optically tracked, radio controlled) missile. All the required nonrocket components can be obtained relatively cheaply from Radio Shack and elsewhere. A two-channel, digital proportional radio-controlled (RC) outfit and two servos are required. Try to get the type that has plug-in crystals, as this makes it easier to select channel frequencies that are less prone to interference than others.

Backyard Rocketry 50

Missile Plans 51
Typical receiver and servo sizes are 54 x 35 x 23mm and 38 x 39 x 19mm, respectively. Thus, there is no problem in installing such devices in a missile. Similarly, as the flight time of the missile will be measurable in tens of seconds, the usual radio-control battery pack need not be used. In its place, the lightest available battery or combination of batteries that will operate the system properly for, say, five minutes can be used.

Always test and get to know the flight characteristics of such a missile before installing any explosive materials.

The missile is based on eight D12-0 engines. These are paired to make four engines of twice the usual length using techniques already described.

Construct engine mounting tubes to suit and install, as shown in Figure 52, between two balsa wood inserts. Minimum thickness of each insert should be 1/4 inch. The drawing is not to scale but clearly indicates principle.

Insert #1 is not drilled through completely but just enough to give the engine tubes a little extra stability. Seal the tubes into both inserts with wood glue. The length of the assembly should be such that when pushed fully home, the engines protrude 1/4 inch or so from the face of insert #2. The diameter of the inserts is slightly less than the internal diameter of the missile body. They, too, should be secured with wood glue.

The actuating arm of one servo connects—via a control rod and vertical link (shown in Figure 54 as HSB link)—to a horizontal hinge pin that itself is affixed to the horizontal stabilizers. Backward and forward movement at the servo end of the control rod is converted into a rotating movement of the hinge pin and, thereby, an up and down movement of the stabilizers themselves.

The other servo arm, again via a control rod, connects to a horizontal link (VSB in Figure 54), which is attached to a vertical hinge pin. This time the backward and forward
movement of the servo arm is converted into a left and right movement of the vertical stabilizers. Note that the vertical hinge pin is cranked or bent slightly (B in Figure 54) for clearance purposes.

Figure 55 shows the principle a bit more clearly.

The fin and stabilizer dimensions are shown in Figure 56. There are various ways to attach the stabilizers, including mounting them on plastic or dowel hinges in a space cut from the rear of the fixed fin. In this instance, tiny retaining pieces (available from hobby shops) would be used to secure the end of each hinge. In tests, however, it was found that, probably because of the short flight time, the expedient method described here worked well enough.

Each hinge is made from 1/8-inch-diameter (approx.) wire. The wire should be of a type that allows it to be bent into a given shape, which it will then retain. The required links are commercial items available from model and hobby shops. These are attached to two lengths of the hinge wire, the servos, battery, and control rods having already been installed in the missile body. Feed the antenna through a
small hole in the side of the missile and secure it to the body with a piece of tape.

Now pierce holes through the missile body just to the rear of the fixed fins. Install the hinge wires by poking one end of one of the wires through the missile body from the inside. Feed the wire through until the link prevents it from going any further and then carefully bend in the other end and push it through the opposite hole. Straighten the wire as required and hook on the appropriate linkages.

Check at this stage that the servos and linkages are working and adjust as required. If all is well, insert a small washer/bearing over each hinge end and press home into the missile body. Again, these are tiny commercial items used in model making, but any number of other things can be used. The only purpose they serve here is as a standoff for the stabilizer base—they stop the base from touching the missile body and, when the stabilizers are glued in place, limit the play in the linkage/hinge assembly.

Now either drill a hole through the front end of each stabilizer and place them onto the exposed hinge ends (securing with adhesive applied to the hinge itself), or, alternatively, gouge a small channel from the front of each stabilizer and affix them to the hinges with wood glue. Seal the hinge against the stabilizer with a length of slim dowel sliced lengthwise and secured with wood glue.

The distance between the back of the fixed fins and the front of the stabilizers should be such that the latter can move with ease.

You will find that nowhere near the usual amount of servo movement is required to provoke a considerable reaction in the flying missile. Remember also that you won't have the decision time available to the controller of a model aircraft, for example.
As this missile uses four separate engines, care must be taken that they all fire simultaneously when it is launched. Thus the ignitors should be connected in series and a high-current battery used. A motorcycle battery works well.

A suitable launcher is shown in Figure 60 (LB). Note that the usual launch lugs have not been used here but rather a single, sturdy launch piece (LP). This takes the form of a wooden or plastic piece, shaped as shown (slightly undersized in illustration for clarity) and attached to the missile (M) at a point close to its center of gravity. This launch piece slides into a length of track, or launch channel (LC).

The track is of such a shape as to prevent sideways movement of the missile and can be improvised easily from a length of aluminum channel. The track runs the length of the box, being secured to its floor via a support piece of wood or such (SP). The box itself should be about 6 inches longer than the missile and have a width and depth that just permits comfortable insertion of the missile fins (F).

The launcher box lid is secured with a fastener and hinged so that it will open through at least 180 degrees. In this manner, the lid forms a support and gives the launcher a minimum safe launch angle. When test-firing, it is extremely easy to overcompensate and plough the missile into the ground. Thus, an initial climb of at least 45 degrees is suggested.

Attach four narrow lengths of wood to the inside rear walls of the box to prevent the missile from falling through.
APPENDIX III

DANGEROUS ROCKET CLUB CODE

1. Construction: My missiles will be made of lightweight materials in order that they can be destroyed quickly if the police turn up.

2. Engines: I will pass on all new engine reloading information I discover to other club members.

3. Recovery: I will spend at least twelve hours recovering after a heavy night of drinking before firing explosive-filled missiles.

4. Weight limits: None.

5. Stability: If, at any time, I discover I am becoming mentally stable, I will resign.

6. Payloads: I will launch only interesting and/or dangerous payloads, but never live animals, I will kill them first.

7. Launch area: I will ensure that the launch area is free from police surveillance before firing.

8. Launchcr: I understand that launching modified rockets can be dangerous. Therefore, in order to protect my eyesight, I will always get someone else to press the button.

9. Ignition system: If anyone knows how to fix the ignition system on a '67 Pontiac, please phone club HQ immediately.

10. Launch safety: I will wait until unsuspecting passersby approach before launching. In the absence of passersby, I will try to take out model aircraft or large dogs.

11. Flying conditions: I will launch modified rockets only when the wind is less than 10 miles per hour.
12. Prelaunch test: When conducting research activities with unproven designs, especially if explosive materials are involved, I will launch remotely, from behind cover, and in complete isolation from any persons not participating in the operation.

13. Launch angles: I will not launch dangerous rockets so that their flight path could cause them to fall on or near me.

14. Recovery hazards: If my rocket becomes entangled in a power line or other dangerous place, I will score five extra points. I will never try to recover rockets from power lines without first using a cat or other small animal to check for current. Rubber gloves and boots must be worn. If the cat won't put them on, shoot it.
Don't settle for those lame model rocket kits available from the local hobby shop. By modifying and adapting the engines and rockets, it's possible to create short- and medium-range surface-to-surface and surface-to-air missiles for some serious fun! Everything you need to know is here, courtesy of the Dangerous Rocket Club: principles of operation, safety precautions, and improvised warhead and missile designs, all illustrated with clear plans and schematics.

Of course, whenever dealing with explosives, rockets, and improvised modifications, failure to follow industry standards for experimentation and design may result in harm to life and limb. Therefore, this book is for information purposes only!

A PALADIN PRESS BOOK
ISBN 0-87364-690-8